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Formulae are given for the counting rate and the transmission function of a triple-axis neutron spectro- 
meter for three-dimensional and two-dimensional momentum transfers starting from the known trans- 
mission functions of the monochromating and the analysing part respectively. Some problems of relating 
these formulae to actual spectrometers and of obtaining the necessary functions and parameters are 
discussed. The general formulae are then specialized to a model spectrometer with Gaussian collimators 
and crystals. This results in a system of non-linear equations for a point-by-point calculation of the 
transmission function. Special care has been taken to keep the formulae absolute, i.e. to avoid unknown 
proportionality factors. This feature allows a detailed treatment especially of the counting rate in relation 
to resolution and the characteristic features of the sample cross section (liquid, phonon and Bragg-peak 
type). Two kinds of intensity factors in the counting rate are distinguished: the 'trivial' factors are 
directly related to the magnitude of the illumination spot in (Q,co) space and thus to resolution. The 
other factors are called 'non-trivial'. These two kinds of intensity factors are identified in the formulae. 
Some considerations are given on the influence of experimental conditions and parameters on each 
of them. 

1. Introduction 

The knowledge of the transmission function is useful 
and necessary for two purposes: 

(i) Interpretation of the results of experiments al- 
ready performed under specific conditions. 

(ii) Planning of future experiments and choice of 
conditions leading to a favourable combination of 
intensity and resolution. This problem is rather in- 
volved in triple-axis spectrometer measurements be- 
cause of the large number of degrees of freedom given 
in this instrument. 

In § 2 we derive an expression for the (Q, co) trans- 
mission function starting from general (i.e. not 
necessary Gaussian) transmission functions of the 
monochromating and the analysing part respectively. 
Formulae are given both for the case of three-dimen- 
sional momentum transfers (equations 7 and 8) as well 
as for the simpler case where only the two components 
of Q in the spectrometer plane are considered (equa- 
tions 9 and 10). In § 3 some problems of the practical 
use of the formulae and of obtaining the necessary 
functions and/or parameters are discussed. The short 
§ 4 gives the counting rate for the important case of 
phonon measurements. In § 5 the general formulae (9) 
and (10) are specialized to Gaussian elements (collim- 
ators and crystals) in order to obtain a system of equa- 
tions useful mainly for application (ii) quoted above. 
§ 6 gives a discussion of the Gaussian-elements formulae 
including the Gaussian approximation, trivial and 
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non-trivial intensity factors, the dependence of the 
counting rate on the type of cross section in the sample 
(smooth, phonon-like, Bragg peak), a qualitative 
analysis by inspection of the monochromator  and 
analyser distributions, and the analysis by elements. 

Special care has been applied to keep the formulae 
absolute, i.e. to avoid any unknown proportionality 
factors. Consequently besides giving more weight to 
application (ii) than to (i) there is more emphasis on 
intensity (counting rate) than on resolution, the latter 
being already given a good treatment in other papers. 
Some derivations are omitted from the main text for 
the sake of brevity. The interested reader may find the 
details of these derivations in the seven Appendices of 
Quittner (1970). One of them gives some checks of the 
formulae given here, e.g. by dimensional analysis. 

2. Counting rate and transmission functions 
for general monochromator and analyser transmissions 

We start from the well-known formula for the number 
of neutrons scattered from a sample with the cross 
section a when the incident flux is q~ 

N= aq~ neutrons/sec. (1) 

The counting rate (CR) in a triple-axis neutron spec- 
trometer is given by an obvious generalization of (1) 

CR= I I(k°)a(k°'kOR(k~)e(fq)dk°dk~ (2) 

where the scalar quantities a and ~0 of equation (1) 
have been replaced by densities over k vectors - the 
density I(k0) of incoming neutron flux and the dif- 
ferential cross section a(k0, k0  a density over k~ vectors. 
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606 THE (Q,co) TRANSMISSION FUNCTION 

Moreover, the acceptance function R(kl). e(/~x) has 
been added, where R(k 0 is the transmission probability 
of the analysing system and e(/~0 the counting efficien- 
cy. [The bar over k means that a k representative of the 
region of interest (e.g. the nominal value) is taken.] 

Another form of equation (2) is 

C R -  ~Oo(/~o) 1 I 4re [¢~ e(fq) I'(ko)a(ko, kOR(k~)dkodk~ (3) 

where tp0(k) is the k density of the neutron source flux 
and I'(k0) is now the transmission probability of the 
monochromator system. This form containing a(k0, kl) 
is not yet adapted to the usual interpretation of 
inelastic neutron scattering which is based on the 
formula 

d2a _ k~ S(Q,09) (4) 
df2do9 ko 

for the differential cross section (van Hove, 1954). 

Q = k o - k l  (5) 

is the momentum transfer and 
h 2 

E= h09 = ~ (ko 2 -  k~) (6) 

the energy transfer in the scattering process; S(Q, 09) is 
a function depending on the scattering lengths a~o~ and 

2 al,~on as well as on the structure and the atomic thermal 
motions of the sample. 

The experiment is thus interpreted in terms of 
momentum and energy transfers. Consequently we 
look for an expression giving the counting rate as an 
integral over Q, co, of the S(Q, 09) characteristic of the 
sample, multiplied by an instrumental function F(Q, 09): 

C R -  Cpo(/~o) ¢ 
F(Q, 09)S(Q, 09)dQd09. (7) 

41r 

This is possible and F(Q,09) is given (Quittner, 1970, 
Appendix I) by 

e(/~O I/,(ko)g(kOdL(Q, 09) (8) F(Q,o ) = ° 

where the surface L comprises the end points of vec- 
tors k0 and kl leading through equations (5) and (6), to a 
given Q and 09. Geometrically this is a plane per- 
pendicular to Q, cutting this vector at a distance M 
from its origin and a distance - A  from its end point 
(see e.g. Bergsma & van Dijk, 1965). (M and A are 
given in equations (17) and )18) below). 

In many cases of practical interest the dependencies 
of IOIo) and R(kl) on the vertical components (com- 
ponents perpendicular to the spectrometer plane) can 
be factored out, resulting in a reduced transmission 
function F(Q~,Qy, oo) (Quittner, 1970, Appendix II): 

C R -  ~°(k°) 
4re 

× IF(Qx, Qr,09)S(Qx, Qy, Qz=O,09)dQxdQyd09 (9) 

F( Qx, Q,, 09)= 
e(kl)A2Qz 

(k:o) a. 2Q0 

It I' x (kox, koy)R(kl~,,kly)dl(Qx, Qy,09). (10) 

Qx is the Q component, in the spectrometer plane, in 
the direction of Q0, the nominal momentum transfer, 
and Qy the Q component perpendicular to Qo, also in 
the spectrometer plane. The integral runs now over a 
line l(Qx, Qy,09); AZQz is given in Appendix I. 

Fig. 1 shows the scattering diagram (scattering 
triangle) for the nominal quantities koM, koA, etc. 
Fig. 2 shows the base line of scattering triangles for a 
general Q, 09 and two different pairs of ko, kx leading to 
the same Q, 09. The end points of such pairs lie on the 
line/(Ox, Q~, 09). 

When evaluating equation (10), the kinematics of 
inelastic neutron scattering (Figs. 1 and 2) must be 
taken into account; likewise the transmission prob- 
abilities, l'(ko) and R(kl) must be considered. For this 
purpose it is convenient to split off the manifold of the 
kl vectors and to transfer it to the left-hand side so 
that all k vectors originate from the O point. 

This results in the construction of Fig. 3 showing 
the integration in equation (10) leading to F(Qx, Qy,09) 
for a general (Q~, Qy, 09). 

Essential for the absolute character of the formulae 
(7), (8), (9) and (10) and of their later applications is the 
factor 1/2Q0, a remnant of a 'Jacobian' of the trans- 
formation of a 6-dimensional density over (k0,kl) in 
equation (3) to the 4-dimensional density over (Q,09) 
in equations (7) and (8). (See Quittner, 1970, Appen- 
dix I.) In many papers only the integral in equation (~) 

koM koA 

0 Qo 

I =  =1  = __1 
Ado -Ao 

Fig. 1. The basic (nominal) scattering diagram showing the 
input parameters kou, koa, S,2, Qo etc. of equations (15) to 
(25). 



G. Q U I T T N E R  607 

or equation (10) is considered, disregarding the slowly 
varying factor before it. This amounts to considering 
only the relative shape of the transmission function, 
which is usually sufficient for problem (i) of the In- 
troduction. 

We use the name 'transmission function' to point to 
its absolute character in contrast to the usual relative 
(or normalized) 'resolution function'. (A simple ex- 
ample of a transmission function is given by the 
formula N=~o/F1F2.4nr 2 for a collimating slit. The 
transmission F~F2.4~zr 2 relates the number of trans- 
mitted neutrons to the source flux density ~00.) This 
absolute feature is essential for the interpretation and 
prediction of both intensity and resolution. 

Summarizing we see that the counting rate (CR) of 
the spectrometer depends on: (a) ~00(/~o), the k density 
of source flux at the mean k value of incoming neu- 
trons; (b) the scattering cross section of the sample 
(in evaluating equations (7) and (9) it is necessary to use 
not the scattering cross section per unit cell but this 
cross section multiplied by the number of elementary 
cells in the sample); (c) The transmission function 
F(Q, co) or F(Qx, Qy, co) with the particular factors as 
given in equations (8) and (10). 

/ \ " , , ,  

/ \ "-,,, 

/ \ " \ ,  

I I \ \ ~ ' x  

,' / \ "---.'.-.. 
till ////i ... x O 

i / i / / / / / / ~  
. "  . . . . . .  . -  o o  

Fig. 2. The manifold of vector pairs (k0, kl) leading to the same 
(general) values of Q and co by equations (5) and (6). The 
common base line for such pairs is shown as a full line in the 
figure: its angle with respect to Q0 is e, [equation (16)]. M 
and A are defined in equations (17) and (18). The manifold 
of these vector pairs is represented in the Figure by two vector 
pairs (dotted lines). The locus of their end points is the line 
I(Q, co) (full line) perpendicular to the base line [see equation 
(10) and the text following it]. 

\ !'(ko) 

\ 

\ 

R(kl ) 

~ u \ 

- - -  - ~  I d  

Fig. 3. Integration lines for calculating the integral in equation 
(10). The manifold of kl vectors and the part A of the base- 
line have been transferred to the left-hand side. All vectors 
now start from the origin. The ellipses around the end points 
of k0~ and k0A are representative of the distributions 
I0'(k0) and R(kl). The integration line l(Q, co) is now repre- 
sented by two (dotted) lines, one on each side. The end points 
of the vector pairs (k0,kl) are the points on these two lines 
having the same distance from the base line. 

3. Practical problems in the determination 
of the transmission function 

Our formulae (8) and (10) show how the transmission 
function can be calculated if the two distributions 
I'(k0) and R(kl) are known. The transmission function 
calculated is therefore as good as the input distribu- 
tion it is based on. 

For the interpretation of specific experiments, 
application (i) of the Introduction, a reliable knowledge 
of the 'ready' transmission function (in its relative 
form), is imperative and the question of the contribu- 
tion of the elements to it is of no importance. Here the 
method of experimental sampling of the resolution 
function by a fi-shaped cross section, i.e. by a Bragg 
reflexion from a single crystal, is applicable. (Some 
care must be taken in such measurements to safeguard 
against the influence of phonons. This is important 
when the resolution function is large and well-focused 
with respect to some phonon branch.) This method has 
been developed and widely applied e.g. by the Riso 
group (Bjerrum-Moller, 1968). We call this approach 
the empirical one. The approach taken in this paper 
which may be called the analytical is necessary for the 
prediction, application (ii) of the Introduction. 

The transmission function is calculated from the 
parameters of the constituent elements; e.g. our 
formulae (8) and (10) combine the transmission 
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608 THE (Q,co) TRANSMISSION FUNCTION 

characteristics of the monochromator and analyser 
into the overall transmission function. This combina- 
tion can be done once more at the next level and the 
characteristics of say the monochromating system 
derived from the parameters of the two collimators 
and the monochromating crystals. [See e.g. formula 
(A III 1) of Quittner (1970)]. To facilitate the calcula- 
tions it is customary to assume Gaussian elements. 
[An example of a markedly non-Gaussian element is 
given by Novell (1969).] 

It is a generally held opinion that such a calculation 
is sufficient for prediction. In applications, however, 
the question arises as to (a) how the element param- 
eters are to be determined and (b) what is their range 
of applicability, e.g. over different angles and neutron 
wavelengths. 

Certainly this problem is more difficult with crystals 
than with collimators. The distribution of mosaic 
blocks in the crystals is not always known and, even 
when it is, there is at present no reliable quantitative 
theory of neutron reflection from real single crystals 
(Werner, Arrot, King & Hendrick, 1966; Dietrich, 
1968). 

Another problem is presented by the spatial effects. 
Our formulae contain angular distributions only and 
thus suppose that the incoming flux is uniformly 
distributed over the sample cross section and that the 
sample is uniformly thick etc., which is not actually 
the case. These restrictions are, in principle, over- 
come by dividing the sample into small regions, 
calculating l'(k0) and R(kl) for each region e.g. 
by the Monte Carlo method (Dietrich, 1968) and 
adding the resulting counting rates. In practice, such a 
calculation becomes rather involved and does not 
seem to have been performed up to now. 

There seems to be at present no satisfactory solution 
to the problems of this section, the main difficulties 
being the lack of a valid theory of neutron Bragg 
reflexion from crystals and the difficulties in dealing 
with spatial effects. However we should mention an 
interesting investigation (Hamasaki, 1967), where a 
specific spatial effect (the 'leakage') is taken into 
account analytically. This paper shows how spatial 
effects influence the angular distributions. It is also an 
example of how the purely formal analytical approach 
can be made more substantial by relating, e.g., the 
Gaussian parameters of the crystals to the different 
wavelengths. 

4. Counting rates for phonon measurements 

Though the phonon case is covered in principle by the 
general formulae (7) and (9) a separate treatment is 
worth while in view of the great practical importance 
of these measurements. 

In the phonon case the following equation is approx- 
imately true: 

S(Q, co) = S'[Q, co(Q)]f[co- co(Q)] 
= S£,(Q)f[co - co(Q)]. (11) 

If we define, for a particular phonon surface, 

F,o(Q) = F[Q, co(Q)] (12) 
then 

CR= ~00(k0)4rc I Fo~(Q)S£,(Q)dQ (13) 

or, if the variation of S~,(Q) over the range of resolu- 
tion function is neglected, 

CR= ¢p0(k_-0)4~ S~,(Q0)fF, o(Q)dQ. (14) 

In this way the intensity and shape of a phonon group 
during a constant Q scan, for example, can be cal- 
culated. We show in some detail such a calculation in 
Appendix II for a simple model of F(Q, co) and a 
simple model of co(Q), the flat phonon surface. How- 
ever formulae (11) to (14), may be applied also to 
curved phonon surfaces both with model F(Q, co)'s 
and with more empirical ones, and for two-dimen- 
sional as well as for three-dimensional Q's. 

5. Transmission function F (Qx, Qy, ¢o) 
for Gaussian elements 

The transmissions of the elements are assumed to be 
Gaussian distributions of the angle variable u" 

f(u) =exp ( -  u; ) for the collimators 

and 

f(u)=Pi(k)exp(- Ufl---2[)forthecrystals. 

The integral in equation (10) can then be evaluated 
analytically, resulting in a system of equations [equa- 
tions (15) to (25) below] for the determination of 
F(qx,q, fE) a function of the relative coordinates 
qx,qy, fiE. 

(F(qx,qy, fE)-F (q~,qy, co= fi-ff-EE ) ) , 

q~ is the component of Q - Q 0  in the direction of Q0, 
and qy the component of Q - Q 0  perpendicular to 
Q0; likewise fiE= E -E 0  is the deviation of the energy 
transfer from its nominal value. [For a derivation see 
Quittner (1970), Appendix III.] 

0 = ~/(-Q0-~-) -2 + q2 (15) 

=tan-1 (q--~-) (16) 

M=½ (Q+ Eo+fE 
2.0740 ) (17) 

- - - ½  (0  
Eo+fE 
2.074Q ) (18) A 

(2.074 is the numerical value of hZ/2m [equation (3)] 
when the energy is given in meV and the momentum 
in A-l). 
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Monochromator 

XOM = koM COS k0 

Y0M=k0M sin Q 

Analyser 

X O A - - = k o A  COS 2 

y0A=koa sin 2 

Definition of/tM~ and c~M~ for equations (19) and (20) Definition of/tAt and eA~for equations (19) and (20) 

M~ 1 2 3 At 1 2 3 
/tMt - 2  - 1 0 /tin - 2  - 1 0 
O~ M t 0~ I ~ M (Z 2 O~ A i 0~ 4 ~ A 0~ 3 

1/-~]MI= (koM • C~Mt) -L [/tMt tan OOM 

× {(M COS a--XoM) COS 0 + (M sin a-YoM) sin O} 

+ { ( M  cos c~-xoM) ( - s i n  O) 

+ ( M  sin a-YoM) cos O}] 

k/UAt=(koA. ~A~) -1LuAt tan 0oa 

x {(A cos ~--XoA) (--COS 2)+(A sin o~--YOA) sin 2} 

+ {(A cos ~ -  XOA) sin 2 

+(A sin ~-Yoa) cos 2} (19) 

and 

lYW-MMt=(k0M. C~Mt) -1 [/tM~ tan 00M 

x (--sin c~ cos 0 + cos c~ sin 0) 

+ (sin e sin 0 + cos e cos 0)] 

V wm=(koa .  O~Ai) -1 [/tAt tan 0oa 

x (sin c~ cos 2 + cos ~ sin 2) 

+ (-- sin c~ sin 2 + cos c~ cos 2)] (20) 

VA, = ~/Um. V W-At (21) 

3 3 

U =  ~ (] /~f~)z+ ~ (]/Ua,)z (22) 
Mi=l  A t = I  

3 3 

V = 2 VM,+ 2 Va, (23) 
Mi=l  A i=l  

3 3 

W= ~ (1/WM, )z+ ~ (I/W-mat)z (24) 
Mi=l  A i=l  

eM(fO) . CA(k1). 8(fq) . A2Oz 
F(qx,qy, fE)  . . . . . . . .  ([%;3.2 Qo 

[_ - 

and that W is a slowly varying function of q:,,qy, fE. 
Therefore, in the case of three-dimensional Q's, equa- 
tions (7) and (8) 

N T I F =  PM(/~o). PA(/~)- e(/}t) . 1/ (26) 
(/}0) 3. 2Qo I / W(0,0,0) 

essentially determines the amplitude of the trans- 
mission function whereas the rapidly varying function 

(which is normalized to unity) determines the relative 
shape of the transmission function and it this identical 
with the usual 'resolution function'. 

The input parameters ~0, 2, k0A, k0M, Q0 of the 
nominal scattering diagram are shown in Fig. 1. 0oM 
and OOA are the nominal Bragg angles of the mono- 
chromator and the analyser, respectively. The triple 
of variables ~, M, A is shown in Fig. 2. 

To obtain the most important features of 
F(qx,qy, fE)  it is sufficient to know F(0,0,0) and to 
have plots of the half-value contour of F(qx,qy, fiE) in 
the ( Q -  o9) space. 

6. Discussion and some applications of formulae 15 to 25 

Amplitude and shape of the transmission function 
It can be shown (Quittner, 1970, Appendix IV) that 

for qx=qy=0;  fiE=0 

U W -0 ,  i.e. exp - U - - i 4 7  =1 

Gaussian approximation 
Although Gaussian elements have been assumed in 

the derivation the final F(qx,qy, fiE) of equation (25) 
is, strictly speaking, not a Gaussian function of 
qx,qy, fiE. This is due both to the variation of W over 
the range of the resolution function and to the non- 
linear transformation of (q~,q, fiE) to (U-VZ/W) .  
Bearing this in mind it is not difficult to find an approx- 
imation to equations (15) to (25) resulting in a strictly 
Gaussian function of qx,qy, fE. This is achieved if 
(1) W in 1/n/W [equation (25)] is replaced by the 
constant W(0,0, 0 ) -  Wo. (2) The non-linear functions 
in equations (15) to (25) are approximated by suitably 
truncated Taylor series so that the argument in equa- 
tion (25) becomes: 

V 2 
U -  W -AxxqZ + Ayyq~+ A~(fiE) z 
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+ 2Axyqxqy + 2Ax~q~OE+ 2Ay~qy5E (27) 

This will be considered in detail in a later publication. 

Intensity and resolution 
Like equations (8) and (10) formula (25) is absolute 

and can therefore be used to discuss both resolution 
and intensity. As mentioned above the resolution is 
determined by 

More involved is the intensity or counting rate. The 
two factors outside the transmission function con- 
tributing to the counting rate are the source neutron 
flux density (;0(k0) and the sample cross section 
S(Q, co). Within the transmission function we want to 
make a distinction between two different kinds of 
intensity factors based on the following consideration. 
Evidently, the counting rate can be increased by 
widening the resolution elements, thereby 'illu- 
minating' a larger spot in the (Q, co) space. We call the 
corresponding intensity factor a 'trivial' one. 

However, there are other factors in the transmission 
function which influence the intensity in ways other 
than by widening or narrowing the resolution function, 
and we call these 'non-trivial' intensity factors. In the 
case of three-dimensional Q's it is exactly the amplitude 
of the transmission function, equation (26); hence 
its name NTIF (non-trivial intensity factor). (In the 
case of two-dimensional Q's, the amplitude of the 
transmission function is given by NTIF x A2Qz, a factor 
of trivial origin in which the vertical resolution is 
'buried'.) Usually one is interested in having a high 
counting rate and good, or at least sufficient, resolu- 
tion. Therefore it is more advantageous to get intensity 
from non-trivial intensity factors than from trivial 
ones. 

Trivial dependence of the counting rate on resolution 
function spread for different kinds of S(Q, co) 

Qualitatively, the counting rate is larger, the larger 
the resolution-function spread. Quantitatively, there 
are important differences depending on whether 
S(Q, co) is smooth or peaked in one or several dimen- 
sions in (Q, co) space. We shall illustrate the differences 
in three typical cases which we call the liquid, the 
phonon and the Bragg-peak case, by considering the 
change in the counting rate due to a uniform expansion 
of the resolution function in the (Qx, Q, OE) space by a 
factor 7, (Fig. 4). 

(1) Liquid case: S(Q, co) does not change appreciably 
over the extension of the resolution function. The 
counting rate increases by ~3. 

(2) Phonon case: S(Q, co) is peaked O-like on sur- 
faces co(Qx, Qy). The counting rate increases by ~2. 

(3) Bragg-peak case: S(Q, co)_~ ~ ( Q -  Q0)O(co). The 
counting rate remains unchanged. 

In case (1) the influence of the trivial intensity factor 
is maximum, and it is minimum (zero) in case (3). The 

phonon case is intermediate and also the most com- 
plicated (e.g. owing to focusing effects). 

Influence of the magnitudes and shapes of the I'(ko) and 
R(kl) distributions 

We consider Fig. 5, showing the integration leading 
to F(qx,qy, ~E), specialized to q,,= qy-- 0, OE= 0, 
and remember that for (0, 0, 0), exp [-  (U-  V2/W)] = 1. 
This integration gives, except for the factor 

e(fcl)A2Qz 

(/~0)a. 2Q0 

the non-trivial intensity factor of equation (26). We 
see that the extensions of the 10(k0) and R(kl) distribu- 
tions perpendicular to Q0 determine the non-trivial 
intensity factor while the extensions parallel to Q0 has 

(a) 

/ I 
! 

(b) 

f 

q 

(,d 

? ~--- q 

(c) 

Fig. 4. Schematic drawings illustrating the trivial dependence 
of counting rate on the character of S(Q, co). (a) 'Liquid' 
case; counting rate proportional to the volume within the 
half-value surface of F(Q, co). (b) 'Phonon' case; counting 
rate proportional to the surface cut out from the phonon 
dispersion surface co(Q) by the half-value surface of F(Q, co) 
and projected onto the Q space (solid line on the q axis). 
(c) 'Bragg-reflexion' case. Counting rate not dependent on 
the extension of F(Q, co). 
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no influence on it. More quantitatively, if both I°(k0) 
and R(kl) are stretched by ),j_ perpendicular to Q0 the 
counting rate increases (in the liquid case) by 72, one 
7± being non-trivial and the other trivial (increase of 
resolution width in the Qy direction). On the other 
hand if both distributions are stretched by 7, in the 
Q0 direction the counting rate in the liquid case in- 
creases again by 72, this times both 7, being trivial 
because of an increase of resolution spread in Qx and 
AE directions. 

Another application of a consideration of this kind 
to the 'inner focusing' will be given in a separate pub- 
lication (Quittner, 197 la). 

Analysis by elements 
The equations (15) to (25) can be used to calculate 

numerically the resolution and intensity in a particular 
spectrometer configuration. However, they can also be 
used to compare different configurations from suitably 
chosen families of them, thus allowing important con- 
clusions to be drawn without making detailed numer- 
ical calculations. One example is the similarity analysis 
showing the 'global' effects of choosing a scale for the 
neutron wavelengths and angular widths of the resolu- 
tion elements. This is described in another publication 
(Quittner, 1971b). 

Here we discuss another important kind of analysis, 
the analysis of the contribution of the different ele- 
ments, collimators and crystals, to intensity and resolu- 
tion. Such an analysis for the resolution has been 
already done by Stedman (1968) and in more detail by 
Nielsen & Bjerrum-Moller (1969). 

The contribution of angular widths cq to resolution 
can be conveniently considered within the Gaussian 
approximation. As we do not discuss this latter here 

1 I 
I I 
I t 
t I 
1 I 

r ( ko )  I I R(k , )  
u I 

u I 

I I 
I I 

koA koM 

I I 
i I 
i I 

1 I 

- A o  ~ ~ M o  

Fig.  5. The  in teg ra t ion  o f  Fig. 3, n o w  special ized to qz=qu = 
0; AE=O. F o r  PM(ko)=Pa(kt)=l it  is d i rect ly  re la ted  to 

l/n/Wo and thus to the non-trivial intensity factor [equations 
(26) and (27)]. 

we will only give some general remarks on this topic. 
The general form of the coefficients Axx, A=y [equa- 
tion (27)] is 

Axx Cl---L C12 C22 
~2 + + - - + . . .  ~10C 2 OC 2 

Such an expression can be considered as a sum of con- 
tributions of element widths to the reciprocal width in 
the Qx direction (although the mixed terms like 
c12/cqoc2 complicate this interpretation). The variables 
here are the reciprocal angular widths, 1/e~. This is in 
contrast to the approach of Nielsen & Bjerrum-Moller 
(1969), who consider the contributions to the width of 
the resolution function. In their analysis they start 
from infinitely narrow elements whereas in the present 
approach it is logical to start from infinitely wide 
elements. 

The dependence of the amplitude of the transmission 
function and thus of the non-trivial intensity on the 
element widths e~ is given by 1/'~ W0 with 

(2 tan 0oM sin Q-  cos Q)2 (tan 00M sin Q-  cos 0) 2 
W o - -  2 2 "]- 2 2 k0M~l k0M~ 

(cos O) 2 (2 tan 00A sin 2 - c o s  2) 2 + + 
2 2 2 2 koMO~2 koao~4 

(tan OoA sin 2--cos 2) 2 (cos 2) 2 
- -  + ( 2 8 )  "~ 2 2 2 2 koa,S a ko,t~3 

7 .  R e l a t i o n  t o  o t h e r  p a p e r s  o n  t h e  s a m e  s u b j e c t  

Several papers have appeared since Collins (1963), 
dealing with different aspects of the resolution function, 
with different degrees of sophistication. We pick out 
only two of them simply because they are the most 
detailed ones. 

Cooper & Nathans (1967) treat the (normalized) 
resolution function in detail and perform also the 
(trivial) integration over a phonon surface. Their reso- 
lution function is Gaussian and thus contains addi- 
tional approximations over that inherent in equations 
(15) to (25). A comparison with the Gaussian approx- 
imation should be possible. Absolute intensity has not 
been discussed in this approach. 

Peckham, Saunderson & Sharp (1967) have con- 
sidered intensity in their starting formulae but these 
have been developed further with respect to focusing 
effects only. As shown in Appendix II, a reduced con- 
sideration (as compared with the full absolute treatment) 
is sufficient for this particular purpose. A comparison 
is also difficult because they do not give the transmis- 
sion function as an intermediate result, but only the 
counting rate. At first glance, the structure of the for- 
mulae is different from that of this paper's formulae. 

The absolute character of the present approach 
allows a full discussion of all factors contributing to 
intensity in its relation to resolution. Without this 
absolute feature several discussions of this paper and 
of Quittner (1971a, 1971b) would not be feasible. 
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The author is grateful to G. Ernst for writing and 
elaborating a computer program on the transmission 
function. 

APPENDIX I 

Transition from three-dimensional momentum 
transfers, equations (7), (8), to two-dimensional ones 

in equations (9), (10). Definition of AZQ~ 

This transition can be readily performed if the distribu- 
tions 10(k0) and R(kl) for three-dimensional k0 and k~ 
factorize into: 

lo(kox, koy, ko~) = I'o(ko~,koy, 0).  i'o(koz) 
R(k~x,k~y,k~)= R(k~:¢,kty, O) . r(k~) . 

A2Q~ is then 

AZQz = l i'o(k~)r(k~-Qz)dk~dQz . (AI1) 

The connection between the F(Q, og) of equation (8) 
and F(Q~,Qy, co), equation (10), is 

F(Q,c°) -  F(Q~, Qx, Q~,co)= V(Q,.)F(Qx, Qy, co), ! 

V(Q~)= f io(k,)r(k~-Q~)dk~ . (AI2) 

For io(ko~) and r(kl~) Gaussian, 

[_kkeoz].r(k~z):exp_ [ k~__] 
i°(k°~)=exp - [ A2kzM ] ' l ~%~,  J ' 

A2Qz = zc . AkzM • AkzA = re. koM . koa . ~M • YA 
(AI3) 

where 7M and Ya are the angular widths of vertical 
collimation. For a more detailed account of this transi- 
tion see Quittner (1970), Appendix II. 

APPENDIX II 

Calculation of the counting rate for a linearized 
phonon surface in a constant-Q scan 

Once the coefficients Axx, Axy, etc. of equation (27) 
are available the counting rate can be calculated as 
follows. We assume that the dispersion relation 
E(qx,qy) can be approximated by a linear form 

BE BE 
E ( q x , q y ) = E o + A E + - ~ q ~ +  ~q-y-qy (All l )  

over the extension of the resolution function, where E0 
corresponds to the nominal spectrometer setting and 

Eo+AE=E(Qo)=E(q~=O; qy=0).  

Substituting 
OE 3E 

A E + - ~  qx + -~Qy qy 

for fiE in equation (27) and collecting terms in qZ, 
2q:,q, q~ we obtain three new coefficients 

( B E )  2 BE (AII2) 

S :  A~g~ 

where 

3E 3E 3E 3E 
B:°'=Axy+A~ Bqx 8q---~ +A"~-~r  +Ay" }qx 

(AII3) 

(BE) 2 ~E 
Byy=Ayy+A,~ ~ +2Ar~ cSqy' (AII4) 

two coefficients for terms linear in qx, qy, and a 
constant, Ae~(AE) 2. According to equation (12) this 
non-centric Gaussian function in Qx, Qy must be 
integrated over Qx, Qv. 

After some lengthy calculations we obtain the peak 
counting rate 

PCR - (po(/~o) PM([%)PA(fq)e(fiq)A2Q~ 
4n (/~0) 3° 2Qo 

V n (AII 5) × S'~(O°)" Wo (B~xByyn R2 W2 

[S~,(Q) is defined in equation (11)], whereas the decre- 
ment S in a constant Q scan, 

CR(AE)-- (PCR).  exp [ -S (AE)  z] 

is given by 

(ByyC~ - 2B~,,CxCy + Bx~C z) 
BxxByy - B 2 (AII 6) .xy 

8E 
Cx = A~ iBqx + Ax~ (AII 7) 

BE 
Cy=A~ 3qy +Ay~ (AII8) 

Focusing effects can be studied quantitatively in a 
way similar to Peckham et al. (1967) by considering the 
last factor in equation (AII 5). 
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